Physicochemical properties that control protein aggregation also determine whether a protein is retained or released from necrotic cells

نویسندگان

  • Andre L Samson
  • Bosco Ho
  • Amanda E Au
  • Simone M Schoenwaelder
  • Mark J Smyth
  • Stephen P Bottomley
  • Oded Kleifeld
  • Robert L Medcalf
چکیده

Amyloidogenic protein aggregation impairs cell function and is a hallmark of many chronic degenerative disorders. Protein aggregation is also a major event during acute injury; however, unlike amyloidogenesis, the process of injury-induced protein aggregation remains largely undefined. To provide this insight, we profiled the insoluble proteome of several cell types after acute injury. These experiments show that the disulfide-driven process of nucleocytoplasmic coagulation (NCC) is the main form of injury-induced protein aggregation. NCC is mechanistically distinct from amyloidogenesis, but still broadly impairs cell function by promoting the aggregation of hundreds of abundant and essential intracellular proteins. A small proportion of the intracellular proteome resists NCC and is instead released from necrotic cells. Notably, the physicochemical properties of NCC-resistant proteins are contrary to those of NCC-sensitive proteins. These observations challenge the dogma that liberation of constituents during necrosis is anarchic. Rather, inherent physicochemical features including cysteine content, hydrophobicity and intrinsic disorder determine whether a protein is released from necrotic cells. Furthermore, as half of the identified NCC-resistant proteins are known autoantigens, we propose that physicochemical properties that control NCC also affect immune tolerance and other host responses important for the restoration of homeostasis after necrotic injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal aggregation of egg white proteins as affected by saccharides

Thermal characteristics of egg white proteins (EWP) may differ in the presence of saccharides. Therefore, the influence of saccharides including carboxymethyl cellulose (CMC), pectin, sucrose and maltodextrin and heating time on physicochemical characteristics of EWP as a whole were studied. Investigation of Heat Coagulation Time (HCT), solubility, turbidity and protein secondary structure of h...

متن کامل

The protein-nanoparticle interaction (protein corona) and its importance on the therapeutic application of nanoparticles

Nanobiotechnology has provided promising novel diagnostic and therapeutic strategies which capable to create a broad spectrum of nano-based imaging agents and medicines for human administrations. Several studies have demonstrated that the surface of nanomaterials is immediately coated with suspended proteins after contact with plasma or other biological fluids to form protein corona-nanoparticl...

متن کامل

Physicochemical Position-Dependent Properties in the Protein Secondary Structures

Background: Establishing theories for designing arbitrary protein structures is complicated and depends on understanding the principles for protein folding, which is affected by applied features. Computer algorithms can reach high precision and stability in computationally designing enzymes and binders by applying informative features obtained from natural structures. Methods: In this study, a ...

متن کامل

Inhibitory effect of corcin on aggregation of 1N/4R human tau protein in vitro

Objective(s):Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. One of the hallmarks of AD is an abnormal accumulation of fibril forms of tau protein which is known as a microtubule associated protein. In this regard, inhibition of tau aggregation has been documented to be a potent therapeutic approach in AD and tauopathies. Unfortunately, the available syntheti...

متن کامل

Beta-catenin Forms Protein Aggregation at High Concentrations in HEK293TCells

Background: The canonical Wnt signal transduction (or the Wnt/β-catenin pathway) plays a crucial role in the development of animals and in carcinogenesis. Beta-catenin is the central component of this signaling pathway. The activation of Wnt/β-catenin signaling results in the cytoplasmic and nuclear accumulation of β-catenin. In the nucleus, β-catenin interacts with the TCF/LEF transcription fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016